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Legal Disclaimer

This whitepaper is provided for informational purposes only and does not constitute an offer, solicitation, or
recommendation to buy or sell any digital asset, security, or financial instrument in any jurisdiction.Obsidian is an
experimental, open-source blockchain protocol under development. The features and functionality described herein
are subject to change and may not be fully implemented.Nothing in this document constitutes legal, financial, tax, or
investment advice. Participation in blockchain networks involves inherent risks, and users assume all responsibility
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regulations in their respective jurisdictions.

Abstract

Obsidian is a blockchain optimized for low-latency, high-frequency data publication. Through the
Silica Protocol, message payloads travel through parallel lanes with dedicated validator
committees, while only compact cryptographic commitments are included in blocks. This
separation allows data throughput to scale independently of EVM execution, maintaining full
Ethereum compatibility.

Unlike storage-oriented blockchains designed for bulk allocation or data leasing,
Obsidian targets small, frequent payloads, enabling decentralized applications that require
continuous data streams without centralized infrastructure.

Technical terms are defined in Appendix B: Glossary on page 20 - 21.



1. Introduction
1.1 The Data Availability Problem

In the current Web3 ecosystem, reliable, on demand data availability and publishing is
addressed with solutions that have significant tradeoffs between cost, latency, and
decentralization.

Centralized data infrastructure remains the most efficient but introduces massive
censorship risks and highly questionable permanence. Current storage-oriented decentralized
network solutions greatly improve permanence but are typically optimized for prepaid data
allocation and static data hosting, making them inadequately suited for on-demand, low-latency
data publication.

As a consequence, decentralized applications requiring continuous data streams, such
as real time messaging, rely heavily on centralized solutions.

1.2 Our Solution

Obsidian addresses this issue through attaching an on demand data protocol (Silica Protocol)
directly alongside transaction blocks. While EVM transactions are computationally intensive,
they are relatively small.

The Silica Protocol leverages this gap by capitalizing on underused network capacity to
carry larger, non-executable data payloads that require very minimal CPU processing. This
enabled Obsidian to sustain high data throughput without increasing EVM execution overhead
which would otherwise degrade transaction performance.

1.3 Design Principles

Execution Isolation: Data flow should never slow down transactions. Heavy data moves on its
own path so EVM execution stays fast.

Native Data Pathway: Messages are built into the protocol itself, not shoved through smart
contracts.

Ethereum Compatibility: Full EVM support with the same tools developers already use.
Accessible Publication: Users can publish data either by paying fees or by using
compute-based mechanisms for spam prevention, depending on urgency and inclusion needs.
Verifiable Permanence: Once data is included, cryptographic commitments make sure it can’t
be altered or faked later.

2. Architecture Overview

Obsidian builds upon the Ethereum execution and consensus layers through a dedicated data
plane called the Silica Protocol
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2.1.1 How this works

- Canonical Block: This is what gets finalized on-chain. It contains normal EVM
transactions plus small cryptographic commitments that point to message data stored
outside the canonical block body.

- Silica Protocol (Data Plane): Message payloads are propagated across the network as
data objects. These data sidecards are gossiped peer-to-peer, erasure-coded, and
temporarily stored by standard validators, permanently stored by full archive nodes and
sharded archive nodes. They are part of the blockchain protocol, but they are
intentionally kept outside the block body so they do not slow down block propagation or
voting.

- The connection: Each canonical block includes cryptographic commitments that link to
specific Silica data sidecars. Validators verify that the referenced data is available by
participating in committee-based availability checks. Once enough independent
validators confirm possession of the data, an availability certificate is produced and
anchored back into the canonical block.

2.1.2 Why separate?

On time block publication is critical for chain consistency and liveliness. Large data payloads,
while not computationally expensive, take more time to distribute under timely latency
constraints.

By separating execution and ordering from data transport and availability, Obsidian
allows transactions to remain fast and predictable; data throughput to scale independently with
minimal impact on execution; and validators to verify availability without immediately
downloading all payload data.



This results in a system where data remains on-chain and verifiably authentic without
competing with transactions for blockspace, computing resources, and bandwidth.

2.2 Silica Protocol

The Silica Protocol defines how message data is propagated, validated, and made available
across the chain.

Silica is responsible for: routing messages into respective lanes, erasure coding each
message batch into redundant chunks, peer to peer lane committee gossip, verifying availability
though lane committee voting, serving data to requested nodes.

Silica operates alongside consensus but does not block it. A block can be finalized even
while data propagation is still in progress.

2.2.1 Where does the data actually live?

The network is divided into parallel lanes. Each lane has a rotating committee of validators
assigned to it. When you submit a message:

1. It gets routed to a specific lane (based on your address)
2. The lane's committee validators store chunks of your data
3. Each validator holds a piece - no single validator has the full message

This distribution model prevents any single validator from becoming a bandwidth bottleneck.

2.2.2 How to retrieve data

Data retrieval is simple, you may query by block or by sender address:

// Get all messages from a specific block
messages = eth_getBlockMessages(blockNumber

// Get messages by sender address within a block range
messages = eth_getMessagesByAddress(address, startBlock, endBlock

The node handles everything behind the scenes; locating the right validators, fetching chunks
from lane committees, and reconstructing the original data. You don't need to know which lane
or committee stored it, this is all done for you.



2.2.3 Node data location

Data Age Stored By How Node Fetches
Recent Lane committee validators Requests chunks, reconstructs
Historical Archival nodes Direct retrieval

3. Messages

3.1 What is a Message?

A message is a signed data payload submitted to Obsidian. Unlike transactions, messages do
not invoke the EVM or execute smart contract logic. The only exception is priority messages,
which include a small deterministic balance change to account for the inclusion bid.

A message includes the sender address, payload data, target block, nonce, bid or VDF
proof, and a cryptographic signature.

Messages are designed for high-frequency submission, small payload sizes, low-latency
inclusion, and permanent on-chain ordering.

3.2 Message ldentity

A message's identity is based on a commitment to a payload, not the payload itself. This allows
the consensus layer to order and verify messages without downloading full payloads. The
payload bytes travel separately through the data plane. This keeps gossiped bytes low.

3.3 Lane Routing

All messages, both standard and priority, are deterministically routed to lanes based on sender
address. This ensures all messages from a single sender go to the same lane. The primary
benefit is simplicity: nodes can immediately determine which lane committee should receive a
message without knowing the current slot or RANDAO state. This enables efficient routing at the
edge of the network due to messages only being gossiped to the lane committee members.

Note: Nonce deduplication and balance checks happen at batch time across all lanes, not
per-lane. The permanent lane assignment is a routing optimization, not a consensus
requirement.



4. Message Lifecycle
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4.1 Submission

Users sign messages and submit them to the network. The protocol validates the signature and
routes the message to the appropriate lane.

4.2 Batching

The Lane Leader (a validator elected for that slot and lane) collects messages and forms a
batch. The leader computes the micro root and the data commitment

4.3 Erasure Coding

The batch is encoded using Reed-Solomon erasure coding, producing redundant chunks. Any
subset of chunks (above a threshold) can reconstruct the original data. This allows the network
to tolerate missing chunks without losing data.

4.4 Committee Voting

Each lane has a Lane Committee—a subset of validators responsible for that lane's data
availability. Committee members receive chunks from the leader, verify possession of their
assigned chunks (PoP), sign availability votes attesting to data availability, and aggregate votes
into an Availability Certificate (AC) at threshold.



4.5 Block Inclusion

The block proposer collects lane headers and availability certificates from all lanes. These are
included in the canonical block body. The proposer does not need the full payload data, only the
commitments and proofs.

4.6 Finality

Obsidian identifies two types of finality:
- Inclusion Finality: The lane header is in a finalized block. The message ordering is
permanent.
- Availability Finality: The availability certificate proves the data was retrievable at
inclusion time.

5. Data Availability Model

5.1 The Challenge

Traditional blockchains place all data on the consensus critical path. Every byte included in a
block must propagate quickly enough for validators to safely verify and vote, tightly coupling
data throughput to block propagation latency.

5.2 Obsidian's Solution

Most DA solutions use Data Availability Sampling (DAS)—Ilight clients randomly sample chunks
to probabilistically verify availability without downloading everything. This lets
resource-constrained nodes verify data is available without trusting validators.

Obsidian takes a different approach: the acceptance criteria for messages is committee
attestation, and non-committee nodes trust that attestation or can optionally sample for
additional confidence.

Aspect DAS-Primary (Ethereum) Committee-Primary (Obsidian)
Block acceptance Requires successful Requires committee QC (2/3
sampling threshold)
Primary Light clients sample Committee members prove chunk
verification randomly possession (PoP)



Parallelism Single blob space per block Multiple lanes with dedicated

committees
Secondary N/A Non-committee nodes can sample
confidence (optional)

5.2.1 The key difference

In Obsidian, a block is valid once the lane committee reaches quorum on the Availability
Certificate. Non-committee nodes don't need to sample to accept the block, they trust the
committee attestation. In DAS-primary systems, the block's validity depends on sampling
succeeding.

5.2.2 Parallel Lane Model

Messages are routed to lanes (parallel channels)

Each lane has a rotating committee of validators

Committee members receive chunks and prove possession (PoP)

Votes aggregate into an Availability Certificate per lane

All lanes process simultaneously meaning throughput scales with lane count

abrwd-~
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5.2.3 Why Lanes Benefit Obsidian

- High throughput: Lanes parallelize DA verification

- Low latency: Committee votes are single-round, not iterative sampling

- Bounded validator load: Each validator only serves on a subset of lane committees

- Deterministic acceptance: Block validity depends on committee QC, not probabilistic
sampling

5.3 Availability Certificates

An Availability Certificate contains: Reference to the lane batch, the data commitment,
aggregated committee signatures, and signer bitmap.

A valid certificate proves that a supermaijority of the lane committee possessed the data
at the time of signing. Combined with erasure coding, this guarantees reconstructability.

5.4 Retention Window

Committee members are obligated to serve data for a specified retention window after inclusion.
After this window, data transitions to archival nodes (sharded and full). This keeps storage
requirements for active validators relatively low while ensuring long term data availability.

5.5 Sharded Archive Nodes

High message throughput creates a storage scaling challenge. At maximum capacity, yearly
data growth can reach in excess of 85 TB, which is far beyond what traditional "store
everything" archive nodes can handle.

Obsidian solves this with sharded archives: instead of every archive storing all history, nodes
store specific epoch ranges:
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5.5.1 How it works

- Epoch ranges: History is divided into epoch ranges (e.g., 1000 epochs per shard)

- Shard groups: Multiple nodes store the same range for redundancy

- Node assighment: Archive operators are programmatically assigned based on current
network needs

- Proportional rewards: Nodes earn rewards proportional to their coverage, uptime, etc.

This architecture enables:

- Accessible participation: Run an archive with consumer hardware by storing a subset
of history

- Horizontal scaling: More epoch ranges served by adding shard groups

- Redundancy: Multiple nodes per shard group ensures availability

Full archives (storing everything) can still exist for complete historical access, but sharded
archives dramatically lower the barrier to entry.
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6. Message Types

Obsidian supports two message types distinguished by the “bid” field.

6.1 Priority Messages

Priority Messages include a fee bid and are sorted by bid amount (highest first) within each lane
batch.

Characteristics:

e Bid > minBid qualifies as a Priority Message

e Sorted by bid within lane (highest bid = first in batch)
e Signed debit authorization

e Deterministic ordering for MEV resistance

Use Cases: Oracle updates, trading signals, time-sensitive alerts

6.2 Standard Messages

Standard Messages have no bid and require a VDF proof for spam resistance. They are
ordered FIFO within each lane batch.

Characteristics:

Bid == 0 or nil qualifies as a Standard Message
Requires VDF proof for anti spam resistance
FIFO ordering within lane

No direct token cost, only small computation cost

Use Cases: Social posts, messaging, open participation, time insensitive votes, etc.

6.3 VDF Anti-Spam

Standard Messages require a Verifiable Delay Function proof. VDFs are computations that: take
a minimum amount of sequential time to compute, can be verified quickly, and, cannot be
parallelized or accelerated

This creates a natural rate limit: users must expend real-world time to submit messages,
preventing spam floods without requiring monetary fees.
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6.4 Message Expiration
Messages specify a TargetBlock for inclusion. If not included within a validity window, the
message simply expires, there is no rollover mechanism. This keeps the system simple and

bounds resource usage.

Note: There is no global message queue. Each node maintains local per-lane buffers for
pending messages. Messages are routed directly to lane committees via targeted P2P, not
broadcast globally.

7. Economic Model

7.1 Fee Distribution

Priority Message fees are distributed among protocol participants:

"Fee Distribution”

[l Block Proposer

50% Lane Leader
Archive Pool

Block Proposer: Compensated for including lane headers
Lane Leader: Compensated for batching, encoding, and distributing data
Archive Pool: Funds long-term data storage infrastructure

7.2 Signed Debit Authorization

Rather than prepaying fees, Priority Messages include a signed debit authorization. The
proposer deducts the bid from the sender's balance at inclusion time. This eliminates stuck
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transactions and enables more predictable fee markets. This also prevents dropped Priority
Messages from deducting fees and having to reconcile balances.

7.3 Validator Incentives
Validators earn rewards through multiple channels:

- Block production: Standard consensus rewards

- Lane leadership: Share of message fees when elected as lane leader

- Archive Participation: Share of message fees when participating as an archive node
(sharded or full)

8. Node Roles

8.1 Block Proposers

Proposers create canonical blocks containing transactions, lane headers, and availability
certificates. They verify header signatures and economics but do not need to download full
sidecar data.

8.2 Validators

Validators participate in consensus and serve on lane committees. Committee assignment
rotates each epoch based on randomness derived from the beacon chain.

8.3 Lane Leaders
Each slot, each lane has an elected leader responsible for:

- Collecting messages for that lane

- Forming and encoding the batch

- Distributing chunks to committee members
- Aggregating votes into a quorum certificate

8.4 Lane Committees

Committees verify data availability for their assigned lane. Members must:

- Download and store assigned chunks
- Respond to sample requests with proofs
- Sign availability votes
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8.5 Archival Nodes

Archival nodes store data beyond the active retention window. They serve historical queries and
provide long-term data persistence. The archive pool (funded by fees) incentivizes this role due
to the increased importance of the archival role compared to standard transaction oriented

chains.

9. Security Model

9.1 Assumptions

Obsidian's security relies on standard blockchain assumptions:

Honest majority: A supermajority of stake is controlled by honest validators

Committee honesty: For each lane, a supermajority of the assigned committee
behaves honestly during availability voting.

Network synchrony: Messages propagate within bounded time during normal operation
Cryptographic hardness: Hash functions and signatures remain secure

9.2 Guarantees

When the security assumptions hold, Obsidian provides the following guarantees:

Inclusion: Once a lane header is in a finalized block, the message ordering is
permanent

Availability: A valid availability certificate proves data was available at inclusion time
Integrity: Data commitments prevent tampering after inclusion

Censorship Resistance: Multiple lanes and rotating leaders reduce censorship risk.
Users are deterministically assigned to lanes, so targeted censorship requires colluding
leaders across multiple slots.

9.3 Threat Mitigation

The protocol includes defenses against common attack vectors:
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Malicious leaders: Committee voting ensures leaders cannot forge availability
Data withholding: Erasure coding allows reconstruction from partial data
Spam attacks: VDF proofs and fee mechanisms rate-limit submissions
Committee collusion: Random assignment and supermaijority thresholds



10. Developer Experience

10.1 For Application Developers

Obsidian provides a native message submission API alongside standard Ethereum RPC:

eth_sendMessageBlob: Submit a signed message

eth_getBlockMessages: Retrieve all messages from a specific block
eth_getMessageByHash: Look up a message by its hash
eth_getMessagesByAddress: Query messages by sender within a block range
eth_getMessageWork: Get VDF parameters for Standard Message submission

Applications can treat Obsidian as both an EVM execution environment and a data publication
layer, using the appropriate pathway for each workload.

10.2 For Infrastructure Operators

Obsidian requires dedicated client software:

Obsidian-Geth: Modified execution layer client with Silica Protocol integration, message
pool, and lane routing

Obsidian-Lighthouse: Modified consensus layer client with lane committee logic, PoP
voting, and availability certificate validation

Archival Nodes: Optional sharded or full archive for historical message data

Note: While Obsidian inherits Ethereum's architecture (EVM, beacon chain consensus), the
Silica Protocol modifications are substantial. Operators must run Obsidian-specific clients,
standard Ethereum clients will not sync with the network.

11.1 What Obsidian Is Not

Not a general-purpose storage network: Obsidian is optimized for small, frequent data
publication rather than large static files or bulk archival storage.

Messages are data-only: Messages store signed data but do not execute code. All
smart contract logic is handled through standard EVM transactions.

Not zero-cost: Standard messages require small computational work for spam
prevention, while priority messages require fees for expedited inclusion.

11.2 Current Limitations
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Retention window: Active validators store message data for a bounded period.
Long-term retrieval relies on archival and indexing infrastructure.



- Message size: The protocol is optimized for kilobyte-scale payloads. Larger datasets
must be chunked across multiple messages or stored externally.

- Lane capacity: Each lane has finite throughput. High-volume senders may see
messages expire before inclusion during congestion.

12. Conclusion

Obsidian Chain addresses the gap between high-latency decentralized storage and low-latency
centralized services by providing a native, protocol-level data publication pathway optimized for
small, frequent messages.

12.1 Key Architectural Innovations

- Separation of concerns: Execution and data availability scale independently

- Silica Protocol: Committee-based data availability with erasure coding

- Dual message types: Fee-based (Priority) and compute-based (Standard) inclusion
pathways

- Commitment-based identity: Consensus operates on commitments, not full payloads

By treating data publication as a priority, not an afterthought, Obsidian enables a new class of
decentralized applications that require both the verifiability of blockchain and near-real-time
responsiveness compared to storage-oriented networks.
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Appendix A: Architectural Diagrams

A.1 System Overview
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Flow summary:

Users submit signed messages to the network

Lane Router assigns messages to lanes based on sender address hash
Each lane's Leader batches messages and erasure-codes them into chunks
Committee members receive chunks and vote on availability (PoP)
Availability Certificates aggregate committee signatures

Block Proposer includes only compact headers + certificates (not payloads)
Payload bytes live in sidecars, referenced by commitments in the block
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A.2 Data Availability Flow
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A.3 Message States

T

User signs & submits

y

Submitted

Enters lane buffer

y

Pending

N

Block includes header + AC

y

TargetBlock window passed Included

|

Block finalized

y

Expired Finalized

)

Consumable by applications

19



Appendix B: Glossary

Term

Archival Node

Availability Certificate

(AC)

Availability Finality

Canonical Block

Canonical Ordering

Committee Quorum

Data Commitment

Erasure Coding

Inclusion Finality

Lane

Lane Batch Header

Lane Committee

Lane Leader

Lane Router

Message Commitment
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Definition

Node responsible for long-term storage and retrieval of historical message
payloads beyond the retention window.

Cryptographic proof that a supermajority of a lane committee attested to data
availability.

Point at which message data is confirmed retrievable via a valid Availability
Certificate.

Single block produced per slot that determines ordering, execution, and finality for
transactions and message commitments.

Permanent ordering of messages determined by inclusion of lane batch headers
in finalized blocks.

Threshold of committee signatures (2/3) required to form a valid Availability
Certificate.

Merkle root of erasure-coded chunks that commits to sidecar content.

Redundancy technique allowing data reconstruction from partial chunks.

Point at which message ordering becomes permanent due to block finalization.

Parallel processing channel to which messages are deterministically routed by
sender address.

Compact header containing message ordering, data commitments, and economic
metadata; included in the canonical block.

Subset of validators responsible for verifying data availability for a specific lane.

Validator elected per slot to batch, encode, and distribute messages for a lane.

Deterministic routing logic that assigns messages to lanes based on sender
address.

Cryptographic reference included in the canonical block that binds a message
batch to its payload bytes without embedding the data itself.
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Deterministic hash identifying a message, derived from sender, payload
commitment, nonce, and signature.

Merkle root of message identifiers that commits to message ordering within a
batch.

Proof provided by committee members demonstrating possession of assigned
erasure-coded chunks prior to voting.

Message with bid greater than MinPMBId; fee-based and ordered by bid amount
within a lane batch.

Error-correcting code that splits data into redundant chunks such that any subset
above a threshold can reconstruct the original payload.
Period during which validators are required to store and serve message data after

inclusion.

Data object containing message payloads; propagated separately from the
canonical block body.

Individual erasure-coded fragments of a sidecar distributed across lane committee
members.

Obsidian’s data availability subsystem responsible for message routing, encoding,
distribution, and availability verification.

Message with zero bid that requires a VDF proof and follows FIFO ordering within
its lane.

Block number a message targets for inclusion; message expires if the validity
window passes.

Proof of sequential computation that cannot be parallelized and can be efficiently
verified.
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