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Legal Disclaimer 

This whitepaper is provided for informational purposes only and does not constitute an offer, solicitation, or 
recommendation to buy or sell any digital asset, security, or financial instrument in any jurisdiction.Obsidian is an 
experimental, open-source blockchain protocol under development. The features and functionality described herein 
are subject to change and may not be fully implemented.Nothing in this document constitutes legal, financial, tax, or 
investment advice. Participation in blockchain networks involves inherent risks, and users assume all responsibility 
for any use of the Obsidian protocol.Readers are responsible for ensuring compliance with applicable laws and 
regulations in their respective jurisdictions. 

Abstract 

Obsidian is a blockchain optimized for low-latency, high-frequency data publication. Through the 
Silica Protocol, message payloads travel through parallel lanes with dedicated validator 
committees, while only compact cryptographic commitments are included in blocks. This 
separation allows data throughput to scale independently of EVM execution, maintaining full 
Ethereum compatibility. ​
​ Unlike storage-oriented blockchains designed for bulk allocation or data leasing, 
Obsidian targets small, frequent payloads, enabling decentralized applications that require 
continuous data streams without centralized infrastructure.  

 
Technical terms are defined in Appendix B: Glossary on page 20 - 21. 
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1. Introduction​
1.1 The Data Availability Problem  
In the current Web3 ecosystem, reliable, on demand data availability and publishing is 
addressed with solutions that have significant tradeoffs between cost, latency, and 
decentralization. 

Centralized data infrastructure remains the most efficient but introduces massive 
censorship risks and highly questionable permanence. Current storage-oriented decentralized 
network solutions greatly improve permanence but are typically optimized for prepaid data 
allocation and static data hosting, making them inadequately suited for on-demand, low-latency 
data publication.  

As a consequence, decentralized applications requiring continuous data streams, such 
as real time messaging, rely heavily on centralized solutions.  

1.2 Our Solution 
Obsidian addresses this issue through attaching an on demand data protocol (Silica Protocol) 
directly alongside transaction blocks. While EVM transactions are computationally intensive, 
they are relatively small.  

The Silica Protocol leverages this gap by capitalizing on underused network capacity to 
carry larger, non-executable data payloads that require very minimal CPU processing. This 
enabled Obsidian to sustain high data throughput without increasing EVM execution overhead 
which would otherwise degrade transaction performance.  

1.3 Design Principles 
Execution Isolation: Data flow should never slow down transactions. Heavy data moves on its 
own path so EVM execution stays fast. 
Native Data Pathway: Messages are built into the protocol itself, not shoved through smart 
contracts.​
Ethereum Compatibility: Full EVM support with the same tools developers already use.  
Accessible Publication: Users can publish data either by paying fees or by using 
compute-based mechanisms for spam prevention, depending on urgency and inclusion needs. 
Verifiable Permanence: Once data is included, cryptographic commitments make sure it can’t 
be altered or faked later. 

2. Architecture Overview 
Obsidian builds upon the Ethereum execution and consensus layers through a dedicated data 
plane called the Silica Protocol 
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2.1.1 How this works 

-​ Canonical Block: This is what gets finalized on-chain. It contains normal EVM 
transactions plus small cryptographic commitments that point to message data stored 
outside the canonical block body. 

-​ Silica Protocol (Data Plane): Message payloads are propagated across the network as 
data objects. These data sidecards are gossiped peer-to-peer, erasure-coded, and 
temporarily stored by standard validators, permanently stored by full archive nodes and 
sharded archive nodes. They are part of the blockchain protocol, but they are 
intentionally kept outside the block body so they do not slow down block propagation or 
voting. 

-​ The connection: Each canonical block includes cryptographic commitments that link to 
specific Silica data sidecars. Validators verify that the referenced data is available by 
participating in committee-based availability checks. Once enough independent 
validators confirm possession of the data, an availability certificate is produced and 
anchored back into the canonical block. 

2.1.2 Why separate? 
 
On time block publication is critical for chain consistency and liveliness. Large data payloads, 
while not computationally expensive, take more time to distribute under timely latency 
constraints.  

By separating execution and ordering from data transport and availability, Obsidian 
allows transactions to remain fast and predictable; data throughput to scale independently with 
minimal impact on execution; and validators to verify availability without immediately 
downloading all payload data. 
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This results in a system where data remains on-chain and verifiably authentic without 
competing with transactions for blockspace, computing resources, and bandwidth.  

2.2 Silica Protocol 

The Silica Protocol defines how message data is propagated, validated, and made available 
across the chain.  
​ Silica is responsible for: routing messages into respective lanes, erasure coding each 
message batch into redundant chunks, peer to peer lane committee gossip, verifying availability 
though lane committee voting, serving data to requested nodes.  
​ Silica operates alongside consensus but does not block it. A block can be finalized even 
while data propagation is still in progress. 
 
2.2.1 Where does the data actually live? 

The network is divided into parallel lanes. Each lane has a rotating committee of validators 
assigned to it. When you submit a message: 

1.​ It gets routed to a specific lane (based on your address) 
2.​ The lane's committee validators store chunks of your data 
3.​ Each validator holds a piece - no single validator has the full message 

This distribution model prevents any single validator from becoming a bandwidth bottleneck. 

 2.2.2 How to retrieve data 
 
Data retrieval is simple, you may query by block or by sender address: 
 
// Get all messages from a specific block​
messages = eth_getBlockMessages(blockNumber)​
​
// Get messages by sender address within a block range​
messages = eth_getMessagesByAddress(address, startBlock, endBlock) 

 
The node handles everything behind the scenes; locating the right validators, fetching chunks 
from lane committees, and reconstructing the original data. You don't need to know which lane 
or committee stored it, this is all done for you.  
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2.2.3 Node data location 
 

Data Age Stored By How Node Fetches 

Recent Lane committee validators Requests chunks, reconstructs 

Historical Archival nodes Direct retrieval 

3. Messages 

3.1 What is a Message? 

A message is a signed data payload submitted to Obsidian. Unlike transactions, messages do 
not invoke the EVM or execute smart contract logic. The only exception is priority messages, 
which include a small deterministic balance change to account for the inclusion bid.​
​ A message includes the sender address, payload data, target block, nonce, bid or VDF 
proof, and a cryptographic signature.​
​ Messages are designed for high-frequency submission, small payload sizes, low-latency 
inclusion, and permanent on-chain ordering. 

3.2 Message Identity 

A message's identity is based on a commitment to a payload, not the payload itself. This allows 
the consensus layer to order and verify messages without downloading full payloads. The 
payload bytes travel separately through the data plane. This keeps gossiped bytes low. 

3.3 Lane Routing 

All messages, both standard and priority, are deterministically routed to lanes based on sender 
address. This ensures all messages from a single sender go to the same lane. The primary 
benefit is simplicity: nodes can immediately determine which lane committee should receive a 
message without knowing the current slot or RANDAO state. This enables efficient routing at the 
edge of the network due to messages only being gossiped to the lane committee members. 
 
Note: Nonce deduplication and balance checks happen at batch time across all lanes, not 
per-lane. The permanent lane assignment is a routing optimization, not a consensus 
requirement. 
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4. Message Lifecycle 

 

4.1 Submission 
Users sign messages and submit them to the network. The protocol validates the signature and 
routes the message to the appropriate lane. 

4.2 Batching 
The Lane Leader (a validator elected for that slot and lane) collects messages and forms a 
batch. The leader computes the micro root and the data commitment 

4.3 Erasure Coding 
The batch is encoded using Reed-Solomon erasure coding, producing redundant chunks. Any 
subset of chunks (above a threshold) can reconstruct the original data. This allows the network 
to tolerate missing chunks without losing data. 

4.4 Committee Voting 
Each lane has a Lane Committee—a subset of validators responsible for that lane's data 
availability. Committee members receive chunks from the leader, verify possession of their 
assigned chunks (PoP), sign availability votes attesting to data availability, and aggregate votes 
into an Availability Certificate (AC) at threshold. 
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4.5 Block Inclusion 
The block proposer collects lane headers and availability certificates from all lanes. These are 
included in the canonical block body. The proposer does not need the full payload data, only the 
commitments and proofs. 

4.6 Finality 
 Obsidian identifies two types of finality:  

-​ Inclusion Finality: The lane header is in a finalized block. The message ordering is 
permanent.  

-​ Availability Finality: The availability certificate proves the data was retrievable at 
inclusion time. 

 

5. Data Availability Model ​
​
5.1 The Challenge  
Traditional blockchains place all data on the consensus critical path. Every byte included in a 
block must propagate quickly enough for validators to safely verify and vote, tightly coupling 
data throughput to block propagation latency. 

5.2 Obsidian's Solution 
Most DA solutions use Data Availability Sampling (DAS)—light clients randomly sample chunks 
to probabilistically verify availability without downloading everything. This lets 
resource-constrained nodes verify data is available without trusting validators.  

Obsidian takes a different approach: the acceptance criteria for messages is committee 
attestation, and non-committee nodes trust that attestation or can optionally sample for 
additional confidence. 
 

Aspect DAS-Primary (Ethereum) Committee-Primary (Obsidian) 

Block acceptance Requires successful 
sampling 

Requires committee QC (2/3 
threshold) 

Primary 
verification 

Light clients sample 
randomly 

Committee members prove chunk 
possession (PoP) 
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Parallelism Single blob space per block Multiple lanes with dedicated 
committees 

Secondary 
confidence 

N/A Non-committee nodes can sample 
(optional) 

 
5.2.1 The key difference 
 
In Obsidian, a block is valid once the lane committee reaches quorum on the Availability 
Certificate. Non-committee nodes don't need to sample to accept the block, they trust the 
committee attestation. In DAS-primary systems, the block's validity depends on sampling 
succeeding. 

5.2.2 Parallel Lane Model 

1.​ Messages are routed to lanes (parallel channels) 
2.​ Each lane has a rotating committee of validators 
3.​ Committee members receive chunks and prove possession (PoP) 
4.​ Votes aggregate into an Availability Certificate per lane 
5.​ All lanes process simultaneously meaning throughput scales with lane count 
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5.2.3 Why Lanes Benefit Obsidian 
 

-​ High throughput: Lanes parallelize DA verification 
-​ Low latency: Committee votes are single-round, not iterative sampling 
-​ Bounded validator load: Each validator only serves on a subset of lane committees 
-​ Deterministic acceptance: Block validity depends on committee QC, not probabilistic 

sampling 

5.3 Availability Certificates 

An Availability Certificate contains: Reference to the lane batch, the data commitment, 
aggregated committee signatures, and signer bitmap. 

A valid certificate proves that a supermajority of the lane committee possessed the data 
at the time of signing. Combined with erasure coding, this guarantees reconstructability. 

5.4 Retention Window 
Committee members are obligated to serve data for a specified retention window after inclusion. 
After this window, data transitions to archival nodes (sharded and full). This keeps storage 
requirements for active validators relatively low while ensuring long term data availability. 

5.5 Sharded Archive Nodes 
High message throughput creates a storage scaling challenge. At maximum capacity, yearly 
data growth can reach in excess of 85 TB, which is far beyond what traditional "store 
everything" archive nodes can handle.  
 
Obsidian solves this with sharded archives: instead of every archive storing all history, nodes 
store specific epoch ranges: 
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5.5.1 How it works 

-​ Epoch ranges: History is divided into epoch ranges (e.g., 1000 epochs per shard) 
-​ Shard groups: Multiple nodes store the same range for redundancy 
-​ Node assignment: Archive operators are programmatically assigned based on current 

network needs 
-​ Proportional rewards: Nodes earn rewards proportional to their coverage, uptime, etc. 

This architecture enables: 

-​ Accessible participation: Run an archive with consumer hardware by storing a subset 
of history 

-​ Horizontal scaling: More epoch ranges served by adding shard groups 
-​ Redundancy: Multiple nodes per shard group ensures availability 

Full archives (storing everything) can still exist for complete historical access, but sharded 
archives dramatically lower the barrier to entry. 
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6. Message Types 

Obsidian supports two message types distinguished by the “bid” field. 

6.1 Priority Messages 

Priority Messages include a fee bid and are sorted by bid amount (highest first) within each lane 
batch. 

Characteristics: 

●​ Bid > minBid qualifies as a Priority Message 
●​ Sorted by bid within lane (highest bid = first in batch) 
●​ Signed debit authorization 
●​ Deterministic ordering for MEV resistance 

Use Cases: Oracle updates, trading signals, time-sensitive alerts 

6.2 Standard Messages 

Standard Messages have no bid and require a VDF proof for spam resistance. They are 
ordered FIFO within each lane batch. 

Characteristics: 

●​ Bid == 0 or nil qualifies as a Standard Message 
●​ Requires VDF proof for anti spam resistance 
●​ FIFO ordering within lane 
●​ No direct token cost, only small computation cost  

Use Cases: Social posts, messaging, open participation, time insensitive votes, etc.  

6.3 VDF Anti-Spam 

Standard Messages require a Verifiable Delay Function proof. VDFs are computations that: take 
a minimum amount of sequential time to compute, can be verified quickly, and, cannot be 
parallelized or accelerated​
​ This creates a natural rate limit: users must expend real-world time to submit messages, 
preventing spam floods without requiring monetary fees. 
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6.4 Message Expiration 

Messages specify a TargetBlock for inclusion. If not included within a validity window, the 
message simply expires, there is no rollover mechanism. This keeps the system simple and 
bounds resource usage. 

Note: There is no global message queue. Each node maintains local per-lane buffers for 
pending messages. Messages are routed directly to lane committees via targeted P2P, not 
broadcast globally. 

7. Economic Model 

7.1 Fee Distribution 

Priority Message fees are distributed among protocol participants: 

 

 

Block Proposer: Compensated for including lane headers​
Lane Leader: Compensated for batching, encoding, and distributing data​
Archive Pool: Funds long-term data storage infrastructure 

7.2 Signed Debit Authorization 

Rather than prepaying fees, Priority Messages include a signed debit authorization. The 
proposer deducts the bid from the sender's balance at inclusion time. This eliminates stuck 
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transactions and enables more predictable fee markets. This also prevents dropped Priority 
Messages from deducting fees and having to reconcile balances.  

7.3 Validator Incentives 

Validators earn rewards through multiple channels: 

-​ Block production: Standard consensus rewards 
-​ Lane leadership: Share of message fees when elected as lane leader 
-​ Archive Participation: Share of message fees when participating as an archive node 

(sharded or full) 

8. Node Roles 

8.1 Block Proposers 

Proposers create canonical blocks containing transactions, lane headers, and availability 
certificates. They verify header signatures and economics but do not need to download full 
sidecar data. 

8.2 Validators 

Validators participate in consensus and serve on lane committees. Committee assignment 
rotates each epoch based on randomness derived from the beacon chain. 

8.3 Lane Leaders 

Each slot, each lane has an elected leader responsible for: 

-​ Collecting messages for that lane 
-​ Forming and encoding the batch 
-​ Distributing chunks to committee members 
-​ Aggregating votes into a quorum certificate 

8.4 Lane Committees 

Committees verify data availability for their assigned lane. Members must: 

-​ Download and store assigned chunks 
-​ Respond to sample requests with proofs 
-​ Sign availability votes 
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8.5 Archival Nodes 

Archival nodes store data beyond the active retention window. They serve historical queries and 
provide long-term data persistence. The archive pool (funded by fees) incentivizes this role due 
to the increased importance of the archival role compared to standard transaction oriented 
chains.  

9. Security Model 

9.1 Assumptions 

Obsidian's security relies on standard blockchain assumptions: 

-​ Honest majority: A supermajority of stake is controlled by honest validators 
-​ Committee honesty: For each lane, a supermajority of the assigned committee 

behaves honestly during availability voting. 
-​ Network synchrony: Messages propagate within bounded time during normal operation 
-​ Cryptographic hardness: Hash functions and signatures remain secure  

9.2 Guarantees 

When the security assumptions hold, Obsidian provides the following guarantees: 

-​ Inclusion: Once a lane header is in a finalized block, the message ordering is 
permanent 

-​ Availability: A valid availability certificate proves data was available at inclusion time 
-​ Integrity: Data commitments prevent tampering after inclusion 
-​ Censorship Resistance: Multiple lanes and rotating leaders reduce censorship risk. 

Users are deterministically assigned to lanes, so targeted censorship requires colluding 
leaders across multiple slots. 

9.3 Threat Mitigation 
The protocol includes defenses against common attack vectors: 

-​ Malicious leaders: Committee voting ensures leaders cannot forge availability 
-​ Data withholding: Erasure coding allows reconstruction from partial data 
-​ Spam attacks: VDF proofs and fee mechanisms rate-limit submissions 
-​ Committee collusion: Random assignment and supermajority thresholds 
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10. Developer Experience 

10.1 For Application Developers 

Obsidian provides a native message submission API alongside standard Ethereum RPC: 

-​ eth_sendMessageBlob: Submit a signed message 
-​ eth_getBlockMessages: Retrieve all messages from a specific block 
-​ eth_getMessageByHash: Look up a message by its hash 
-​ eth_getMessagesByAddress: Query messages by sender within a block range 
-​ eth_getMessageWork: Get VDF parameters for Standard Message submission 

Applications can treat Obsidian as both an EVM execution environment and a data publication 
layer, using the appropriate pathway for each workload.  

10.2 For Infrastructure Operators 

Obsidian requires dedicated client software: 

-​ Obsidian-Geth: Modified execution layer client with Silica Protocol integration, message 
pool, and lane routing 

-​ Obsidian-Lighthouse: Modified consensus layer client with lane committee logic, PoP 
voting, and availability certificate validation 

-​ Archival Nodes: Optional sharded or full archive for historical message data 

Note: While Obsidian inherits Ethereum's architecture (EVM, beacon chain consensus), the 
Silica Protocol modifications are substantial. Operators must run Obsidian-specific clients, 
standard Ethereum clients will not sync with the network. 

11.1 What Obsidian Is Not 

-​ Not a general-purpose storage network: Obsidian is optimized for small, frequent data 
publication rather than large static files or bulk archival storage. 

-​ Messages are data-only: Messages store signed data but do not execute code. All 
smart contract logic is handled through standard EVM transactions. 

-​ Not zero-cost: Standard messages require small computational work for spam 
prevention, while priority messages require fees for expedited inclusion. 

 

11.2 Current Limitations 

-​ Retention window: Active validators store message data for a bounded period. 
Long-term retrieval relies on archival and indexing infrastructure. 
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-​ Message size: The protocol is optimized for kilobyte-scale payloads. Larger datasets 
must be chunked across multiple messages or stored externally. 

-​ Lane capacity: Each lane has finite throughput. High-volume senders may see 
messages expire before inclusion during congestion. 

12. Conclusion 

Obsidian Chain addresses the gap between high-latency decentralized storage and low-latency 
centralized services by providing a native, protocol-level data publication pathway optimized for 
small, frequent messages. 

12.1 Key Architectural Innovations 

-​ Separation of concerns: Execution and data availability scale independently 
-​ Silica Protocol: Committee-based data availability with erasure coding 
-​ Dual message types: Fee-based (Priority) and compute-based (Standard) inclusion 

pathways 
-​ Commitment-based identity: Consensus operates on commitments, not full payloads 

By treating data publication as a priority, not an afterthought, Obsidian enables a new class of 
decentralized applications that require both the verifiability of blockchain and near-real-time 
responsiveness compared to storage-oriented networks. 
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Appendix A: Architectural Diagrams 

A.1 System Overview 
 

 
 

Flow summary: 

1.​ Users submit signed messages to the network 
2.​ Lane Router assigns messages to lanes based on sender address hash 
3.​ Each lane's Leader batches messages and erasure-codes them into chunks 
4.​ Committee members receive chunks and vote on availability (PoP) 
5.​ Availability Certificates aggregate committee signatures 
6.​ Block Proposer includes only compact headers + certificates (not payloads) 
7.​ Payload bytes live in sidecars, referenced by commitments in the block 
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A.2 Data Availability Flow 
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A.3 Message States 
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Appendix B: Glossary 

Term Definition 

Archival Node Node responsible for long-term storage and retrieval of historical message 
payloads beyond the retention window. 

Availability Certificate 
(AC) 

Cryptographic proof that a supermajority of a lane committee attested to data 
availability. 

Availability Finality Point at which message data is confirmed retrievable via a valid Availability 
Certificate. 

Canonical Block Single block produced per slot that determines ordering, execution, and finality for 
transactions and message commitments. 

Canonical Ordering Permanent ordering of messages determined by inclusion of lane batch headers 
in finalized blocks. 

Committee Quorum Threshold of committee signatures (2/3) required to form a valid Availability 
Certificate. 

Data Commitment Merkle root of erasure-coded chunks that commits to sidecar content. 

Erasure Coding Redundancy technique allowing data reconstruction from partial chunks. 

Inclusion Finality Point at which message ordering becomes permanent due to block finalization. 

Lane Parallel processing channel to which messages are deterministically routed by 
sender address. 

Lane Batch Header Compact header containing message ordering, data commitments, and economic 
metadata; included in the canonical block. 

Lane Committee Subset of validators responsible for verifying data availability for a specific lane. 

Lane Leader Validator elected per slot to batch, encode, and distribute messages for a lane. 

Lane Router Deterministic routing logic that assigns messages to lanes based on sender 
address. 

Message Commitment Cryptographic reference included in the canonical block that binds a message 
batch to its payload bytes without embedding the data itself. 
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Message ID Deterministic hash identifying a message, derived from sender, payload 
commitment, nonce, and signature. 

Micro Root Merkle root of message identifiers that commits to message ordering within a 
batch. 

PoP (Proof of 
Possession) 

Proof provided by committee members demonstrating possession of assigned 
erasure-coded chunks prior to voting. 

Priority Message Message with bid greater than MinPMBid; fee-based and ordered by bid amount 
within a lane batch. 

Reed–Solomon Encoding Error-correcting code that splits data into redundant chunks such that any subset 
above a threshold can reconstruct the original payload. 

Retention Window Period during which validators are required to store and serve message data after 
inclusion. 

Sidecar Data object containing message payloads; propagated separately from the 
canonical block body. 

Sidecar Chunks Individual erasure-coded fragments of a sidecar distributed across lane committee 
members. 

Silica Protocol Obsidian’s data availability subsystem responsible for message routing, encoding, 
distribution, and availability verification. 

Standard Message Message with zero bid that requires a VDF proof and follows FIFO ordering within 
its lane. 

TargetBlock Block number a message targets for inclusion; message expires if the validity 
window passes. 

VDF (Verifiable Delay 
Function) 

Proof of sequential computation that cannot be parallelized and can be efficiently 
verified. 
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